
Physical Character Animation using
Machine Learning

Design Document

Team 4

Client/Advisor: Jim Lathrop

Rob Quinn - Project lead, Sim lead programmer, client communications
Joe Sogard - Web lead, Backend programmer
Joe Kuczek - Full stack web, SCRUM master

Luke Oetken - Simulation programmer, Status reporter
Andrew McKeighan - Simulation programmer

Kenneth Black - Simulation programmer, Machine Learning

sdmay18-04@iastate.edu

https://sdmay18-04.sd.ece.iastate.edu/

Revised: 2/20/2018

mailto:sdmay18-04@iastate.edu
https://sdmay18-04.sd.ece.iastate.edu/


Table of Contents
Introduction 3

Acknowledgement 3

Problem and Project Statement 3

operational Environment 3

Intended Users and uses 3

Assumptions and Limitations 3

Expected End Product and Deliverables 4

Specifications and Analysis 4

Proposed Design 4

Design Analysis 5

Design Specifications 5

Testing and Implementation 6

Interface Specifications 6

Hardware and software 6

Functional Testing 6

Non-functional Testing 7

Process 7

Results 8

Closing Material 8

Conclusion 8

References 8

Appendices 9

PAGE 1



List of definitions

● Animation - character movements for a game or media
● Keyed animation - animation made by interpolating between manually placed 

keyframes
● Keyframe - represents a character’s pose at a given frame
● Physical animation - animation where the character’s movement is driven by 

physics and forces
● Physically based animation - animation where physics were studied or used to 

create keyframes

PAGE 2



1 Introduction

1.1 ACKNOWLEDGEMENT

This project will receive necessary assistance from the university to provide us a 
dedicated server and database.

1.2 PROBLEM AND PROJECT STATEMENT

In modern video games there is an increasing need for high-fidelity physical and physics 
based animations for characters. These animations can be extremely time consuming 
and expensive to make using traditional methods such as hand-keying or motion 
capture, and require many professional animators. Also, most existing procedural 
animation tools only work on human skeletons. 

This project creates physical animations for video game characters using genetic 
algorithms. Characters have realistic 3D physicality and learn coordinated muscle-based
motion to satisfy a goal such as creating a walk cycle.

1.3 OPERATIONAL ENVIRONMENT

This is a virtual simulation rendered on the Unity 3d game engine (ref. 4.2.1). The engine
creates most of the graphical interface, with our code being written on separate script 
components written in C#.

1.4 INTENDED USERS AND USES

Our intended users are game developers who need animations for their characters. 
Many games today use physical animations where the movement of the character is 
driven by physics. Other games that use keyed animations may use physics simulation 
to make their animations realistic. Animations and especially walk cycles are time 
consuming and may require a dedicated professional to make them. Our application will 
take characters and simulate them to learn physically plausible movements which game 
developers can then use in their game.

1.5 ASSUMPTIONS AND LIMITATIONS

Assumptions:

● The cost will be negligible considering we are not working for pay, using free 
tools, and the web server is provided.

● The simulation can be run faster than real time in order to get the data we need.

Limitations:

● Two semesters to work on project.
● Limited by the amount of training data.

PAGE 3



1.6 EXPECTED END PRODUCT AND DELIVERABLES

End product will be a virtual simulation of character movements using a genetic 
algorithm/machine learning implementation. The product will be delivered at the end of 
our second semester in May. We will have the core functionality completed in February. 

2 Specifications and Analysis
2.1 PROPOSED DESIGN

2.1.1 Genetic Algorithm Design

Our genetic algorithm simulates characters to learn physical animations.

2.2 DESIGN ANALYSIS

We researched different machine learning options:

● Genetic algorithms

○ Genetic algorithms are the easiest machine learning algorithm to get 
started with and should scale well for our purposes.

○ Genetic algorithms with k-best and crossover options

● Unity Machine Learning Agents (ref. 4.2.2)

○ Released in beta after we started, but being evaluated in case we want to
switch

○ Uses TensorFlow and GPU processing (ref. 4.2.3-5)

○ May learn significantly faster

Physics

● Physics runs at a stable rate

● Simulation can be sped up safely by bottlenecking at physics (no framerate 
dependency)

● Muscles

○ Initially, muscles based on motor force

○ Converting to tension based muscles

○ Sinewave driven is a good solution, may add octaves

Website options

PAGE 4



The primary options that we have to decide on regarding the website is mainly the 
language that we will be writing the front and back-end in. Options include Node.js with 
AngularJS, Python Flaskr, or jQuery with PHP. There are advantages and disadvantages
of each, primarily what the developers have more and less experience with.

We implemented a genetic algorithm for the animals to learn to walk. They have 
muscles, a brain, and a genome to represent their unique muscle values. 

The implementation works well and the animals learn within 5 to 100 generations how to 
walk, depending on the complexity of the animal (number of limbs and joints)

Overall the project is going well and should work with our algorithms. To take this to the 
next level we have been looking into Unity Machine Learning Agents which we may 
integrate into the project to make the learning faster and more robust. It uses a powerful 
machine learning library which we could not implement on our own for this project but 
may be useful to add.

Animals are currently very successful with their learning and we have found good 
settings for the physics that are realistic and stable.

The animals are very capable with our current algorithm and with more genetic options 
they will learn better. If Unity ML-Agents works well for our needs and outperforms our 
current algorithm we may integrate it.

2.3 DESIGN SPECIFICATIONS

We are using Unity to simulate our project (ref. 4.2.1). We would only need a computer 
that has the specifications that would allow it to run the simulation in Unity.

We need to be able to simulate at least three different types of animal, each of which will
result in a learned locomotion behavior. We also need to be able to simulate the physics 
up to 10-times faster than real time. It must simulate physics at a consistency for various
scales, and run for 1000 generations without supervision. Finally the simulation should 
be able to take stable evolved genomes and use them in a new branch.

Our website should be able to hold up to 500 different generations in the database. It 
also should be able to show an updated graph of the fitness score over time. The 
website must also be visually appealing.

3 Testing and Implementation

3.1 INTERFACE SPECIFICATIONS

Testing of this project will be done on the animal simulation itself and on the client-side 
website. On the simulation we will manually test to ensure that the algorithm is working 
as intended. Since we plan for the animals to do poorly initially then learn to do better, it 
will only be necessary to ensure that they are initially able to move and that data is 
recorded.

PAGE 5



Regarding the website there will be more in-depth testing. Initially there will be unit 
testing by developers on how data is entered into the database. There will be manual 
testing on how the website looks, and there will also be unit testing on how data is 
interpreted on the front end. The majority of these tests will be manual or will take place 
during development.

3.2 HARDWARE AND SOFTWARE

Testing of this project will be done on the animal simulation itself and on the client-side 
website. On the simulation we will manually test to ensure that the algorithm is working 
as intended. Since we plan for the animals to do poorly initially then learn to do better, it 
will only be necessary to ensure that they are initially able to move and that data is 
recorded.

Regarding the website there will be more in-depth testing. Initially there will be unit 
testing by developers on how data is entered into the database. There will be manual 
testing on how the website looks, and there will also be unit testing on how data is 
interpreted on the front end. The majority of these tests will be manual or will take place 
during development.

3.3 FUNCTIONAL TESTING

We will have a test suite that will make sure that the algorithms are performing correctly. 
It will make sure that the animals are being evaluated against the correct criteria. We 
can also use tools to test the website to make sure that we are getting the correct 
functionality for layout of the pages.

To test if the machine learning algorithm is making notable progress, we will let the 
simulation run until the fitness scores remain approximately the same for 200 
generations, indicating a plateau. Then we look at the graph to see any areas of positive 
increase in the score. If there are no areas of improvement then the animal and the test 
will be reviewed to think about if the animal may be performing to the best of its ability 
but is physically unable to make progress (for example, a flightless bird trying to fly to 
100 meters high).

3.4 NON-FUNCTIONAL TESTING

To test that the application has consistent physics simulation at various time scales, we 
will run the simulation at the highest allowed time scale, and again at real time, and 
compare where the animals end up. If they end in the same position and pose then the 
physics are consistent. 

To test if the simulation can run without supervision for 0 to 1000 generations we will 
leave the simulation running for however long it takes to reach 1000 generations. For 
example, a 20 second generation at 10x real time speed will take 20 * 1000 / 10 = 2000 
seconds. At the end of the 1000 generation we will see that there are no errors and the 
algorithm has made progress. 

PAGE 6



To test if genomes are stable enough to reuse for future branches of generations, we will
save the genomes, stop the simulation, and load the genome. The simulation should 
start where it left off and receive approximately the same or better fitness score.

To test if the data in the site is up to date, we will run a simulation to upload a new 
genome, then refresh the website and see that the data is there. 

To test if the website is visually pleasing and good to compare data, we will populate the 
data with genomes and compare two genomes we know what to expect as the result, 
and see if the result is visually apparent in the graph. 

3.5 PROCESS

The animal simulation will be tested in the application by 

● selecting a character
● select locomotion action
● letting the genetic algorithm run until termination condition
● Get animation and results

The back-end of the website will be tested manually during development. The developer 
will run the animal simulation for a time and ensure that the appropriate data is being 
sent to the database.

The front-end of the website will also be tested manually during development. Developer
will store fake data in the database then ensure that it is properly reflected on the front 
end.

3.6 RESULTS

● Simulation
○ Locomotion

■ The animals learn how to walk, run, turn, sit, and more.
○ Behavior

■ The animal learns what to prioritize to maximize its lifespan
○ Success:

■ Learning makes progress at a reasonable rate and reaches 
desired behavior within 1000 generations.

■ Desired behavior varies by animal but it is when the animal 
appears to perform the action to the best of its ability. 

PAGE 7

Select animal, 
locomotion/beha
vior,
other parameters

Simulation runs 
and gathers data

Simulation 
results saved 
and sent to 
database

Flow diagram



○ Failure:
■ The animal fails to learn the behavior or make progress in 1000 

generations

● Website
○

4 Closing Material

4.1 CONCLUSION

Our project will simulate animals with genetic algorithms for the purpose of research and
exploring the capabilities of machine learning within the context of animal locomotion 
and behavior. We will deliver a simulation app that can run different animals in the 
environment and a website to upload and analyze the data. Our team has experience 
with Unity, machine learning, and web, so we are qualified to make this project a 
success.

4.2 REFERENCES

4.2.1 Unity
https://unity3d.com 

4.2.2 Unity Machine Learning Agents
https://github.com/Unity-Technologies/ml-agents

4.2.3 Nvidia Cuda
https://www.geforce.com/hardware/technology/cuda

4.2.4 Nvidia cuDNN
https://developer.nvidia.com/cudnn

4.2.5 TensorFlow
https://www.tensorflow.org/

4.3 APPENDICES

PAGE 8

https://www.tensorflow.org/
https://developer.nvidia.com/cudnn
https://www.geforce.com/hardware/technology/cuda
https://github.com/Unity-Technologies/ml-agents
https://unity3d.com/

